Immersion lithography with numerical apertures above 2.0 using high index optical materials
نویسندگان
چکیده
The progress of optical lithography has approached the sub-30 nm regime using 193nm excimer lasers as the exposure sources. To increase the numerical aperture (NA) further, many issues, especially those related to materials, need to be addressed. In this paper, we present the analytical and experimental results of oblique two-beam lithography with sapphire (Al2O3) as the optical material. At 193nm, the index of sapphire is 1.92 while the typical index of a photoresist is near 1.70. Classical theory predicts that, ignoring the absorbance in the photoresist, once the NA is greater than the photoresist refractive index, no energy will be transmitted across the sapphire/photoresist boundary due to total internal reflection. However, it can be shown that the absorbance in the resist prevents a “critical angle” and total internal reflection will not occur. Photoresist exposure can result even when NA is greater than the photoresist refractive index. The image profile is strongly affected by the real and imaginary parts of the photoresist refractive index. Optimization of photoresist optical properties is necessary for good image profile. Lutetium aluminum garnet (Lu3Al5O12 or LuAG with an index 2.14 at 193 nm) is also investigated as an alternative lens material.
منابع مشابه
Snell or Fresnel – The influence of material index on hyper NA lithography
As immersion lithography is extended to ever increasing resolution, the resulting propagation angles in the materials involved become closer to grazing than to normal incidence. Classical laws of refraction and reflection cannot be used with either assumption however, as a collection of angles may exist across the entire range. Fresnel reflection at these angles becomes large enough that small ...
متن کامل25nm Immersion Lithography at a 193nm Wavelength
The physical limitations of lithographic imaging are ultimately imposed by the refractive indices of the materials involved. At oblique collection angles, the numerical aperture of an optical system is determined by nsin(θ) , where n is the lowest material refractive index (in the absence of any refractive power through curvature). For 193nm water immersion lithography, the fluid is the limitin...
متن کامل244-nm imaging interferometric lithography
Imaging interferometric lithography, combining off-axis illumination, multiple exposures covering different regions of spatial frequency space, and pupil plane filters to ensure uniform frequency-space coverage, is a relatively new imaging concept that provides an approach to accessing the fundamental, linear-systems-resolution limits of optics. With an air medium between the lens and the wafer...
متن کاملThree-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography
Immersion interferometric lithography has been applied successfully to semiconductor device applications, but its potential is not limited to this application only. This paper explores this imaging technology for the production of threedimensional nano-structures using a 193 nm excimer laser and immersion Talbot interferometric lithographic tool. The fabrication of 3-D photonic crystals for the...
متن کاملFocusing light into deep subwavelength using metamaterial immersion lenses.
We propose and demonstrate metamaterial immersion lenses by shaping plasmonic metamaterials. The convex and concave shapes for the elliptically and hyperbolically dispersive metamaterials are designed using phase compensation method. Numerical simulations verify that the metamaterial immersion lenses possess exceptionally large effective numerical apertures thus can achieve deep subwavelength r...
متن کامل